

# 全面透視核能

# 趙嘉崇

Presented to

### 中華核能學會

2022年12月23日 at 張榮發基金會

# 最近演講的結論

• 結論1

核能不是選項,而是人類邁向下一步文明的必經之路

2021 06

結論2

世界核能發展的巨輪正向前急駛,台灣不在船上

2022 02



### 今天的結論

# The fun is yet to begin

# 好戲正要上場

# 近兩年核能發展達40年之高峯

- 新議題, 新公司, 新局勢, 新立法
- •世界核能發展-風雲際會百家爭鳴
- 2021-2022尤甚
- 所涉議題廣泛, 今天擇重點討論



# 今天討論的主要題目

- 1. 核廢處理與消除-核燃料循環
  - -與防範核武擴散
- 2. 核融合的進展
- 3. 小型模組化核能電廠SMR的考量



# 很多核能議題沒有包含在今天討論內一但歡迎提問

- •核能安全全面觀
- 低劑量輻射的健康效益
- •太空應用
- 新式核燃料
- 其他還有很多議題

## 消除核廢料之理論基礎與工程設計

# 趙嘉崇

清華大學

李存敏館(綠能館)204會議室

2018年10月31日中華核能學會舉辦

Dr Jason Chao October 31, 2018

# 核廢料放你家好不好?

我的回答:沒問題但是我必須要擁有它的主權.

(致富是因為無知的人太多.)

最後,在此讓我回答一個常在網路看到的問題,題目是:「核廢料放你家好不好?」我的回答是:「沒問題,如果鄰居同意,但是我必須要擁有它的主權。」

## 賬目不清,如何治理能源世界 乏燃料會計學

| 主要成分          | 成分比例 | 資產還是負債 |
|---------------|------|--------|
| 鈾             | 95%  | 資產     |
| 鈽             | 1%   | 資產     |
| 高放射性<br>次鉤系元素 | 0.1% | 可以是資產  |
| 核分裂衍生物        | 4%   | 負債     |

## 全面消除核廢要做什麼事

## 沒有遠慮 面臨的都是近憂

有人問處理核廢的問題,是要往東,還是往西?答案是黃色的,因為問題的性質都搞錯

- 1核廢處理與消除-2核燃料循環-3與防範核武擴散
  - -這三者一體不可分割
  - -核廢料處理的議題必須受命於其他兩者的政策方 向與採用技術

經濟發展是主要動力 防範核武擴散的考量影響全局大方向



圖6.10 日本採用之雙層次核燃料循環策略

### 核燃料大循環何時開始

- 如果世界走向全面核燃料大循環之路,一個循環之周期大約五十年之譜
- 於是中程暫時性乏燃料核儲存設備也開始成為矚目議題,以解決核電廠廠區乏燃料暫存容量有限之苦
- 馬上跟進產生的議題有乏燃料運輸安全議題
- 核燃料大循環所需的提煉技術已被視為常用,但仍須高成本投資與設有防範核武擴散之檢查機制

## 核廢是核武的原料

一般核電廠,產生的核廢料,含有核武原料原料, 若提煉出核武原料是世界核武擴散的首要憂慮, 世界數百國家都簽署國際防範核武擴散盟約

#### 盟約包括一重要機制

- -駐維也納之國際原能總署,可派員到場,或在各核電廠裝置既時監控設備,
  - 1.一則防範已用過的核燃料被私下運走,
  - 2.再者控管生產於核燃料棒內核武元素的數量

## 快中子核反應爐近年又開始被矚目

以消耗己產出的鈽與高階核廢料為主要目的.

- A. 減低核武之危脅
- B.减少地底深層處置核廢之負擔
- C.增加核燃料使用之經濟效率

## 核燃料循環與政治軍事不可分割

#### 核燃料循環與最終處置的區域性國際合作社

- -區域性核電諸國可結盟
- -共同分享核料所有權共同負擔核廢料責任
- -擇地建立提煉機制與廠房,結盟國家共同分享利益共擔經濟責任
- -鈽生產量須有限制根據核燃料有實質使用 之地而刻意不過量生產
- 違約者依合約接受國際嚴厲制裁
- -以能源市場為依據共進共退
- -結盟國同意國際核能署檢查防範核武擴散

## 一切機制仍需五年至十年始可成熟

國家政策須設置乏燃料資產管理之行政部門

- 乏燃料內含之鈾與鈽視之為資產
- 乏燃料內含之核分裂副產品與最終棄物視之為負債
- 總資產之淨值受影響因素有:
  - -鈾之市場價
  - -提煉技術之增進
  - -新進的地底管道埋廢之採用

## 重大概念

• 核燃料之循環,乏燃料之儲存,與終極核廢料之地底處置

都需要與世界接軌為前提

### 各型核融合方式

- Magnetic fusion 磁場圍東法
  - -Tokamak 托卡馬克
  - -Stellarator 恆星型
- Inertial Confinement 慣性圍東法
- Cold Fusion 冷聚變
- Lattice Confinement Fusion 晶格束縛核融合
- Field Reverse Configuration電磁場反饋效應裝置
  - -Alpha Ring
  - -TAE Technologies
  - -Helion

### Initial Confinement Fusion 的突破

美國能源部於2022年12月13日宣布Lawrence Livermore Labs 在 Initial Confinement Fusion 的突破.輸入能量2.05MJ.核融合能量3.15MJ.

## 雷射核融合示意圖







圖9.3 核融合反應能量收支平衡之必要條件與各國實驗進度之展示

## 核融合何時可以商業運轉

達到核融合商業運行的四大要件,依順序為:

- 1. 証實了核融合物理反應
- 2.輸出能量大於輸入能量
- 3.找到可以控制連續釋核融合能量的物理法則
- 4.全型商業運轉電廠之設計

# 小型模組化核電廠

• 近五年SMR的各項進展,包括設計,實驗,模型示範,執照申請,與市場推廣達高峰

• 每年增加為數不少的新公司

## 小型模組化核電廠的一些優勢

- 1.容易管理電力需求的配合
- 2.建廠擇址條件適合散裝多數小型廠房,勝過 集中少數大型廠房
- 3.緊急疏散區小
- 4.容易設計防地震所需結構
- 5.冷卻水需要量少容易覓址
- 6.近年軟體發展迅速,促使模組化的設計可以執行到位
- 7.組裝本身具重複性經濟效益
- 8.組裝本身具量產性經濟效益

## 小型模組化核電廠的重要優勢

## 為何小型模組化核電廠更安全?

- 蛻變熱少,所需排熱機制的要求變小
- •內部體積小,容易設計出讓冷卻水自然循環的幾何分佈

# 容易設計出讓冷卻水自然循環的幾何分佈



Large LWRs with loop configuration (a) and SMR (IRIS) integral primary circuit configuration (b), and the overall containment size (c)

## 結論

- 世界核能發展當下已形成四十多年空前盛況
- 國家要富強必須要有核能
- 所有富強的國家都有核能
- 核能發展要在國際上要積極爭取權益機會與合作
- 國內積極培養核能人才
- 小型模組化核能電廠是一個難得的機會,不但可以解決缺電問題,更可以在核能發展上做跳躍式的邁進